collision is an isolated event in which two or more moving bodies (colliding bodies) exert forces on each other for a relatively short time.

Although the most common colloquial use of the word "collision" refers to accidents in which two or more objects collide, the scientific use of the word "collision" implies nothing about the magnitude of the forces.

Some examples of physical interactions that scientists would consider collisions:

  • An insect touches its antenna to the leaf of a plant. The antenna is said to collide with leaf.
  • A cat walks delicately through the grass. Each contact that its paws make with the ground is a collision. Each brush of its fur against a blade of grass is a collision.
Some colloquial uses of the word collision are:
                     TYPES OF COLLISION

There are two types of collisions between two bodies - 1) Head on collisions or one-dimensional collisions - where the velocity of each body just before impact is along the line of impact, and 2) Non-head on collisions, oblique collisions or two-dimensional collisions - where the velocity of each body just before impact is not along the line of impact.

According to the coefficient of restitution, there are two special cases of any collision as written below:

  1. A perfectly elastic collision is defined as one in which there is no loss of kinetic energy in the collision. In reality, any macroscopic collision between objects will convert some kinetic energy to internal energy and other forms of energy, so no large scale impacts are perfectly elastic. However, some problems are sufficiently close to perfectly elastic that they can be approximated as such. In this case, the coefficient of restitution equals to one.
  1. An inelastic collision is one in which part of the kinetic energy is changed to some other form of energy in the collision. Momentum is conserved in inelastic collisions (as it is for elastic collisions), but one cannot track the kinetic energy through the collision since some of it is converted to other forms of energy. In this case, coefficient of restitution does not equal to one.
In any type of collision there is a phase when for a moment colliding bodies have same velocity along line of impact then kinetic energy of bodies reduces to its minimum during this phase and may be called as maximum deformation phase for which momentarily coefficient of restitution become one.Collisions in ideal gases approach perfectly elastic collisions, as do scattering interactions of sub-atomic particles which are deflected by the electromagnetic force. Some large-scale interactions like the slingshot type gravitational interactions between satellites and planets are perfectly elastic.Collisions between hard spheres may be nearly elastic, so it is useful to calculate the limiting case of an elastic collision. The assumption of conservation of momentum as well as the conservation of kinetic energy makes possible the calculation of the final velocities in two-body collisions.


Leave a Reply


    Kyle Frances Munar.
    I like pictures and photographs. Above all, I love Physics. It's the best subject ever. Especially that your teacher is the reincarnation of Albert Einstein. 


    January 2014